报告人:孙玉华教授(南开大学)
时 间:2021年1月15日上午 10:30-11:30
地点:华南数学应用与交叉研究中心学术报告厅111
题目:Liouville's theorems to quasilinear differential inequalities involving gradient nonlinearity term on manifolds
摘要:
We investigate the nonexistence and existence of nontrivial positive solutions to $\Delta_m u+u^p|\nabla u|^q\leq0$ on $M$, where $m>1$, $M$ is a noncompact geodesically complete manifold, and $(p,q)\in \mathbb{R}^2$. According to classification of $(p, q)$, we establish sharp volume growth conditions to present Liouville's theorems for the above quasilinear differential inequalities. Moreover, the results are completely new for $(p, q)$ of negative power, even in the Euclidean space.
报告人简介:
孙玉华,南开大学数学科学院副教授,研究方向为流形上的分析、椭圆与抛物方程,已在CPAM、JFA、CVPDE等期刊上发表学术论文16篇。